Exam. Code : 103206 Subject Code : 1191

B.A./B.Sc. $6^{\text {th }}$ Semester
 MATHEMATICS
 Paper-I (Linear Algebra)

Time Allowed-Three Hours] [Maximum Marks-50
Note :-Attempt FIVE questions in all selecting at least TWO questions from each section. All questions carry equal marks.

SECTION-A

1. (a) Prove that Z, the set of all integers, forms a group w.r.t. the binary operation $*$ defined as $a * b=a+b+2 \forall a, b \in Z$.
(b) If W_{1} and W_{2} are subspaces of $V(F)$, then prove that $W_{1} \cup W_{2}$ is a subspace of $V(F)$ iff either $\mathrm{W}_{1} \subseteq \mathrm{~W}_{2}$ or $\mathrm{W}_{2} \subseteq \mathrm{~W}_{1}$.
2. (a) Let $\mathrm{x}=(1,2,-1) ; \mathrm{y}=(2,-3,2) ; \mathrm{z}=(4,1,3)$; $\mathrm{w}=(-3,1,2)$ be vectors in $\mathbb{R}^{3}(\mathbb{R})$. Show that $L(\{x, y\}) \neq L(\{z, w\})$.
(b) Let V be a vector space over F , prove that for $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3} \in \mathrm{~V}$:
(i) the set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ is L.D. iff v_{1} and v_{2} are collinear.
(ii) the set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ is L.D. iff $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$ are coplanar.
2793(2519)/EBH-18585 1
(Contd.)
3. (a) Find k if the vectors $\left[\begin{array}{r}1 \\ -1 \\ 3\end{array}\right],\left[\begin{array}{r}1 \\ 2 \\ -2\end{array}\right],\left[\begin{array}{l}\mathrm{k} \\ 0 \\ 1\end{array}\right]$ are L.D.
(b) Prove that any linearly independent set in vector space $V(F)$ can be extended to a basis of V .
4. (a) Let V be the vector space of all 2×2 symmetric matrices over \mathbb{R}. Find a basis and dimension of V .
(b) Let W be a subspace of finite dimensional vectorspace $\mathrm{V}(\mathrm{F})$, prove that $\operatorname{dim} \mathrm{W} \leq \operatorname{dim} \mathrm{V}$.
5. (a) In \mathbb{R}^{3}, let W_{1}, W_{2} be the subspaces generated by $\{(1,0,-1),(2,1,3)\}$ and $\{(-1,2,2),(2,2,-1)$, $(3,0,-3),(2,-1,2)\}$ respectively. Find the dimension of (i) W_{1}, (ii) W_{2}, (iii) $\mathrm{W}_{1} \cap \mathrm{~W}_{2}$, (iv) $\mathrm{W}_{1}+\mathrm{W}_{2}$.
(b) If W is a subspace of a finite dimensional vector space $V(F)$, prove that $\operatorname{dim} V / W=\operatorname{dim} V-\operatorname{dim} W$.

SECTION-B

6. (a) Find a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that $\mathrm{T}(1,2)=(3,-1,5)$ and $\mathrm{T}(0,1)=(2,1,-1)$.
(b) Show that a mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(x+2, y, z)$ is not a linear transformation.

2793(2519)/EBH-18585
7. (a) If $V(F)$ and $W(F)$ are two vector spaces over the same field F and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a L.T. Suppose V is finite dimensional. Prove that :

$$
\text { Rank } T+\text { Nullity } T=\operatorname{dim} V
$$

(b) Find a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ whose range space is generated by $(1,2,0,-4)$ and $(2,0,-1,-3)$.
8. (a) Prove that every n-dimensional vector space over the field F is isomorphic to F^{n}.
(b) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $T(x, y, z)=$ $(x-2 y-z, y-z, x)$. Prove that T is invertible and find T^{-1}.
9. (a) Let $B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis for vector space $V(F)$ and $T: V \rightarrow V$ be a L.T., prove that for any $\mathrm{v} \in \mathrm{V},[\mathrm{T} ; \mathrm{B}][\mathrm{v} ; \mathrm{B}]=[\mathrm{T}(\mathrm{v}) ; \mathrm{B}]$.
(b) Find the matrix representation of the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by

$$
T(x, y)=(x+4 y, 2 x+3 y, 3 x-5 y) \text { w.r.t. }
$$

ordered bases :

$$
\begin{aligned}
& B_{1}=\{(1,1),(2,3)\} \text { for } \mathbb{R}^{2} \text { and } \\
& B_{2}=\{(1,1,1),(1,1,0),(1,0,0)\} \text { for } \mathbb{R}^{3}
\end{aligned}
$$

a2zpapers.com
10. (a) Let $M=\left[\begin{array}{rrr}3 & -4 & 5 \\ 1 & 2 & -6\end{array}\right]$ be the matrix which
determines the linear transformation $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $T(V)=M V \forall V \in \mathbb{R}^{3}$. Find the matrix of T w.r.t. the bases $B_{1}=\{(1,1,1),(1,1,0),(1,0,0)\}$ for \mathbb{R}^{3} and $B_{2}=\{(1,2),(3,4)\}$ for \mathbb{R}^{2}.
(b) Let $\mathrm{B}_{1}=\{(1,0),(0,1)\}$ and $\mathrm{B}_{2}=\{(1,3),(2,5)\}$ be two ordered bases for \mathbb{R}^{2}. Find the transition matrix P from B_{1} to B_{2} and the transition matrix Q from B_{2} to B_{1}. Also verify $\mathrm{Q}=\mathrm{P}^{-1}$ and $P\left[v ; B_{2}\right]=\left[v ; B_{1}\right]$.

