Exam. Code : 103206 Subject Code : 1191

B.A./B.Sc. 6th Semester MATHEMATICS

Paper—I (Linear Algebra)

Time Allowed—Three Hours] [Maximum Marks—50

Note :— Attempt FIVE questions in all selecting at least TWO questions from each section. All questions carry equal marks.

SECTION-A

- (a) Prove that Z, the set of all integers, forms a group w.r.t. the binary operation * defined as a * b = a + b + 2 ≠ a, b ∈ Z.
 - (b) If W₁ and W₂ are subspaces of V(F), then prove that W₁ ∪ W₂ is a subspace of V(F) iff either W₁ ⊆ W₂ or W₂ ⊆ W₁.
- 2. (a) Let x = (1, 2, -1); y = (2, -3, 2); z = (4, 1, 3); w = (-3, 1, 2) be vectors in ℝ³(ℝ). Show that L({x, y}) ≠ L({z, w}).
 - (b) Let V be a vector space over F, prove that for v₁, v₂, v₃ ∈ V :
 - (i) the set {v₁, v₂} is L.D. iff v₁ and v₂ are collinear.
 - (ii) the set {v₁, v₂, v₃} is L.D. iff v₁, v₂, v₃ are coplanar.

2793(2519)/EBH-18585

(Contd.)

www.a2zpapers.com www.a2zpapers.com

ad free old Question papers gndu, ptu hp board, punjab

3. (a) Find k if the vectors
$$\begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}, \begin{bmatrix} k \\ 0 \\ 1 \end{bmatrix}$$
 are L.D.

- (b) Prove that any linearly independent set in vector space V(F) can be extended to a basis of V.
- (a) Let V be the vector space of all 2 × 2 symmetric matrices over IR. Find a basis and dimension of V.
 - (b) Let W be a subspace of finite dimensional vectorspace V(F), prove that dim W ≤ dim V.
- (a) In ℝ³, let W₁, W₂ be the subspaces generated by {(1, 0, -1), (2, 1, 3)} and {(-1, 2, 2), (2, 2, -1), (3, 0, -3), (2, -1, 2)} respectively. Find the dimension of (i) W₁, (ii) W₂, (iii) W₁ ∩ W₂, (iv) W₁ + W₂.
 - (b) If W is a subspace of a finite dimensional vector space V(F), prove that dim V/W = dim V - dim W.

SECTION-B

- 6. (a) Find a linear transformation T : ℝ² → ℝ³ such that T(1, 2) = (3, -1, 5) and T(0, 1) = (2, 1, -1).
 - (b) Show that a mapping T : ℝ³ → ℝ³ defined by T(x, y, z) = (x + 2, y, z) is not a linear transformation.

2793(2519)/EBH-18585

(Contd.)

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjab

2

7. (a) If V(F) and W(F) are two vector spaces over the same field F and T : V → W be a L.T. Suppose V is finite dimensional. Prove that :

Rank T + Nullity T = dim V.

- (b) Find a linear transformation T : ℝ³ → ℝ⁴ whose range space is generated by (1, 2, 0, -4) and (2, 0, -1, -3).
- (a) Prove that every n-dimensional vector space over the field F is isomorphic to Fⁿ.
 - (b) Let T : ℝ³ → ℝ³ be defined by T(x, y, z) = (x - 2y - z, y - z, x). Prove that T is invertible and find T⁻¹.
- 9. (a) Let B = {v₁, v₂, ..., v_n} be a basis for vector space V(F) and T : V → V be a L.T., prove that for any v ∈ V, [T; B] [v; B] = [T(v); B].
 - (b) Find the matrix representation of the linear transformation T : ℝ² → ℝ³ defined by

T(x, y) = (x + 4y, 2x + 3y, 3x - 5y) w.r.t. ordered bases :

 $B_1 = \{(1, 1), (2, 3)\}$ for \mathbb{R}^2 and $B_2 = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ for \mathbb{R}^3 .

2793(2519)/EBH-18585

(Contd.)

www.a2zpapers.com www.a2zpapers.com oad free old Question papers gndu, ptu hp board, punjab

3

10. (a) Let M =
$$\begin{bmatrix} 3 & -4 & 5 \\ 1 & 2 & -6 \end{bmatrix}$$
 be the matrix which

determines the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(V) = MV \neq V \in \mathbb{R}^3$. Find the matrix of T w.r.t. the bases $B_1 = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ for \mathbb{R}^3 and $B_2 = \{(1, 2), (3, 4)\}$ for \mathbb{R}^2 .

(b) Let $B_1 = \{(1, 0), (0, 1)\}$ and $B_2 = \{(1, 3), (2, 5)\}$ be two ordered bases for \mathbb{R}^2 . Find the transition matrix P from B_1 to B_2 and the transition matrix Q from B_2 to B_1 . Also verify $Q = P^{-1}$ and $P[v; B_2] = [v; B_1]$.

2793(2519)/EBH-18585

5600

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjab